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Abstract—Requirement-to-code traces reveal the code loca-
tion(s) where a requirement is implemented. Traceability is
essential for code evolution and understanding. However, creating
and maintaining requirement-to-code traces is a tedious and
costly process. In this paper, we introduce TraceRefiner, a novel
technique for automatically refining coarse-grained requirement-
to-class traces to fine-grained requirement-to-method traces.
The inputs of TraceRefiner are (1) the set of requirement-to-
class traces, which are easier to create as there are far fewer
traces to capture, and (2) information about the code structure
(i.e., method calls). The output of TraceRefiner is the set of
requirement-to-method traces (providing additional, fine-grained
information to the developer). We demonstrate the quality
of TraceRefiner on four case study systems (7-72KLOC) and
evaluated it on over 230,000 requirement-to-method predictions.
The evaluation demonstrates TraceRefiner’s ability to refine
traces even if many requirement-to-class traces are undefined
(incomplete input). The obtained results show that the proposed
technique is fully automated, tool-supported, and scalable.

I. INTRODUCTION

Traceability specifies which code region implements a re-
quirement. It facilitates change impact analysis and program
understanding. It is most beneficial when engineers are not
or little familiar with the existing code, a scenario that they
typically encounter during software maintenance. It has been
shown [1] that engineers making changes to unfamiliar code
leads to errors, accelerated software decay, and consequently
wasted effort. This is due to the fact that they are more prone
to applying changes to incorrect/suboptimal code regions [3],
[4]. Keeping track of traceability information between re-
quirements and code counters this problem [3]. Doing so is
recommended by software engineering practices and standards
(such as CMMI level 3) [5]–[7]. Nevertheless, the benefits of
requirement-to-code traces are contingent on their availability,
completeness, and correctness. Correct traces assist engineers
in applying changes to appropriate code regions. Likewise,
complete traces assist engineers in becoming aware of a
requirement’s implementation in its entirety. Herein lies one
of the fundamental problems of traceability: to date, no au-
tomated technique exists that is able to generate requirement-
to-method traces at an acceptable level of completeness and
correctness [8]–[10].

Hence, today, the only truly effective technique for cap-
turing traces is a manual one. However, the main downside
of manual trace capture is its high effort. Take, for example,

iTrust [11] – one of the case studies later used in this paper.
It has 4,913 methods in 718 Java classes distributed between
a client and a server. Even though, we merely investigated a
subset consisting of 34 of its requirements, engineers need
to capture 4,913×34=167,042 requirement-to-method traces
to precisely document every Java method’s relationship. The
manual burden is overwhelming.

Considering trace granularity, code can be divided into
coarse-grained regions such as classes, or fine-grained ones
such as methods. Coarse-grained traces are high level traces
contained in large portions of code (classes) as opposed to fine-
grained traces, which are specific to a limited amount of lines
of code (methods). Since there are less coarse-grained regions
(classes) than fine-grained ones (methods) [8], it is faster,
cheaper, and easier to capture coarse-grained requirement-to-
code traces than fine-grained ones [12]. However, informing
engineers of the coarse-grained region implementing a require-
ment is not as useful as informing them of the fine-grained
region implementing a requirement [12]. Indeed, pinpointing
precisely which small code region (i.e., method) implements a
requirement is more useful than pinpointing which large code
region (i.e., class) implements a requirement [12].

In this paper, we are introducing our technique TraceRefiner,
which takes coarse-grained requirement-to-class traces and
refines them into fine-grained requirement-to-method traces.
To the best of our knowledge, this is the first attempt to do
so. This allows the engineer to focus on the cheaper task
to produce coarse-grained requirement-to-class traces. In the
following, the terms coarse-grained traces and requirement-to-
class traces are used interchangeably. Likewise, the terms fine-
grained requirement-to-code traces and requirement-to-method
traces are used interchangeably.

To evaluate TraceRefiner, we compare the fine-grained
predictions output by TraceRefiner against a ground truth fine-
grained requirement-to-code traces (gold standard) collected
from professional software developers [17]. The ground truth
consists of four case study systems ranging from 7.2 to
72KLOC in size and covering 81 requirements for which we
had available high-quality requirement-to-method traces for
a large range of classes and methods. Hence we were able
to validate TraceRefiner’s ability to handle incompleteness
(i.e., undefined requirement-to-class traces), which is common
since engineers rarely capture traces completely [8]. Even with
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incompleteness, TraceRefiner is successful in refining class to
method-level traces with high precision and recall.

The remainder of this paper is organized as follows. Sec-
tion II introduces TraceRefiner, subsequently evaluated in
Section III. Section IV presents related work before Section V
concludes the paper.

II. TECHNIQUE

A. T trace, N trace and U trace
Requirement-to-code traces are typically provided in the

form of matrices called requirement-to-code trace matrices
(rtm). A requirement-to-class rtmc is the input to TraceRefiner.
Table I shows an example of such an rtmm[m,r]c for a vehicle
management system, which we use as an illustrative example
in this paper. The columns of this matrix enumerate the
different requirements under consideration and the rows denote
the classes of interest. We consider two requirements namely,
“Requirement 1: Start Car and GPS” and “Requirement 2:
Set Passenger Info and Book Ticket”. Each entry within Ta-
ble I (apart from the headers) denotes the tracing information
relative to the given requirement-to-class entry of interest. For
simplicity, we use the abbreviations T, N and U to respectively
designate T traces, N traces and U traces.

A T trace in an entry implies that the corresponding class
implements the requirement. For example, the classes GPS
and Car have T traces to requirement 1. An N trace in an
entry implies that the class definitely does not implement the
requirement. For example, the class Passenger has an N trace
to requirement 1. Unique to our problem is a third possible
entry state, which we refer to as the U trace. A U trace is
an incompleteness and denotes a trace that is unknown to be
an N trace or a T trace. For example, it is unknown whether
the classes Seat, Vehicle, and Train have T or N traces to
requirement 1. U traces are mostly ignored in literature even
though it is our observation that, in practice, U traces are the
norm and not the exception. Indeed, engineers rarely capture
the full requirement-to-code relationships for a given software
system [2]. It also motivates TraceRefiner’s focus on T and N
trace refinement because both convey more knowledge than U
traces.
Definitions 1:
• rtmc[class,requirement] returns the trace value of an entry

in a requirement-to-class rtmc. Possible values are either a
T trace, an N trace, or a U trace.

• rtmm[method,requirement] returns the trace value of an entry
in a requirement-to-method rtmm. Its possible values are
either a T trace, an N trace, or a U trace also.

• rtmc[set<classes>,requirement] returns the set of trace val-
ues for the requirement-to-class entries input.

• rtmm[set<methods>,requirement] returns the set of trace
values for the requirement-to-method entries input.

B. TraceRefiner’s Architecture
Both the program structure and the coarse-grained

requirement-to-class traces (rtmc) are presented as input to
TraceRefiner. TraceRefiner requires source code because it

TABLE I: Excerpt of the Requirement-to-Class T traces for
the Vehicle Management System (an illustration)

Class Requirement 1 Requirement 2
GPS T U
Car T N
Seat U T

Passenger N T
Vehicle U U
Train U T

uses information about the code’s structure (e.g., method
calls) to refine requirement-to-class traces into requirement-
to-method traces. The code structure is readily computable
by parsing the source code. We did so using the open-source
library Spoon [13]. Our four-step technique is made of four
successive steps, namely (1) N Refinement, (2) N Propagation,
(3) T Refinement, and (4) T Propagation. The entries of the
initial requirement-to-method matrix rtmm provided at Step
1 are filled with U traces and each step attempts to replace
these U traces with either T or N traces. Furthermore, Steps
1 and 3 take the requirement-to-class rtmc as an input. The
output of TraceRefiner is a requirement-to-method rtmm that
is structurally similar to the requirement-to-class rtmc except
that the rows enumerate methods rather than classes. An entry
in a requirement-to-method rtmm is thus identified by a method
and a requirement. Its possible values are either a T, N or U
trace.

C. Code Structure

Figure 1 shows an excerpt of the code structure of a
vehicle management system. Each class is represented by
a rectangle with the top part containing its name and the
bottom part enlisting the methods within the class. In Fig-
ure 1, we have six classes with eight methods numbered 1
through 8. Calling relationships are represented by full arrows,
while interface/implementation relationships are represented
by dashed arrows. For instance, method 2-start calls method 1-
startGPS. We state that 2-start is the caller of 1-startGPS and
reciprocally 1-startGPS is the callee of 2-start. Also, Vehicle
is an interface that has two implementations (Car and Train).
The implementations Car and Train both implement method
6-bookTicket contained in the interface Vehicle. TraceRefiner
makes predictions for tracing relationships based on method
calls parsed from the source code. Nevertheless, we notice
that the notion of method calls needs to be extended due to
the presence of interface/implementation relationships. Thus,
we extend the callers/callees with extra calling relationships
that need to be added explicitly. Table II shows the extended
callers/callees for each method within Figure 1. The meth-
ods shown in bold and italic within Table II represent the
additional callers/callees that we obtained after applying our
“caller/callee extension”. For the sake of simplification, we
use the terms callers and callees in this paper to respectively
designate the extended callers and callees.
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Fig. 1: Program Structure of the Vehicle Management System

D. TraceRefiner: A Four-Step Technique
TraceRefiner initially presumes all requirement-to-method

traces to be U traces. It then applies four successive steps
outlined above. We apply TraceRefiner on the example shown
in Figure 1. Figure 2 shows our rtmm after applying each step
of TraceRefiner on the example shown in Figure 1. For brevity,
the method names are omitted in the first column of each rtmm.
As shown in the leftmost rtmm in Figure 2, TraceRefiner starts
out with an rtmm filled with U traces for each requirement-
to-method entry. Each step attempts to replace these U traces
with either T or N traces. The highlighted entries with bold
predictions in Figure 2 represent the new predictions made
at each step of TraceRefiner. Every step of TraceRefiner is
represented by an algorithm, we define the keywords used by
our algorithms below:
Definitions 2:
• collectCallers(method) is used to collect all of the extended

callers of a given method.
• collectCallees(method) is used to collect all of the extended

callees of a given method.
• allNs(rtmc/m[set<classes/methods>,requirement]) is used to

check if all the requirement-to-method entries (if rtmm is
input) or all the requirement-to-class entries (if rtmc is input)
have N traces to a given requirement.

• allTs(rtmc/m[set<classes/methods>,requirement]) is used to
check if all the requirement-to-method entries (if rtmm is
input) or all the requirement-to-class entries (if rtmc is input)
have T traces to a given requirement.

• atLeast1N(rtmc/m[set<classes/methods>,requirement]) is
used to check if at least one requirement-to-method entry
(if rtmm is input) or requirement-to-class entry (if rtmc is
input) has an N trace to a given requirement.

• atLeast1T(rtmc/m[set<classes/methods>,requirement]) is
used to check if at least one requirement-to-method entry
(if rtmm is input) or requirement-to-class entry (if rtmc is
input) has a T trace to a given requirement.

We will present each of TraceRefiner’s steps below.
1) Step 1- N Refinement (Algorithm 1)

A class may have a T trace to more than one requirement.
Hence, not all methods of a class must have a T trace to the
same requirement(s). However, if a class has an N trace to a
given requirement then none of its methods will have a T trace
to that requirement. Hence, it is easiest to start trace refinement
with classes that have N traces to a given requirement.

Algorithm 1 depicts the first step of TraceRefiner. It iterates
over all methods and requirements. If the method’s class has
an N trace to the requirement r (rtmc[m.class,r]==N) then
we infer that the method has an N trace to that requirement
(rtmm[m,r]=N).

Algorithm 1 Step 1-N Refinement

1: for all r in Requirements do
2: for all m in Methods do
3: if rtmc[m.class,r]==N then
4: rtmm[m,r]=N
5: end if
6: end for
7: end for

Returning to the illustrative vehicle management system
example in Figure 1, we know from its requirement-to-class
rtmc (Table I) that the class Passenger has an N trace to
requirement 1. Hence, Step 1 infers that all methods of
class Passenger have N traces to requirement 1. Since method
4-setPassengerInfo is a method of class Passenger (Figure 1),
it follows that method 4-setPassengerInfo has an N trace to
requirement 1.

The predictions vary for different requirements. For ex-
ample, only the class Car has an N trace to requirement 2.
Hence, Step 1 infers that the class Car’s methods 2-start and
8-bookTicket have N traces to requirement 2. Do note that
TraceRefiner never overwrites a prediction. Hence, we have
three predictions made in Step 1 as shown by the highlighted
entries in our rtmm in Figure 2.

Fig. 2: Our input rtmm after executing our four-step technique

2) Step 2- N Propagation (Algorithm 2)
Predictions made for a method in Step 1 can be propagated

to other methods that call this method or are called by it. Since
Step 1 predicted N trace information, Step 2 propagates N
trace information. The rationale for Step 2 is based on the work
of Ghabi and Egyed [1] who observed that trace values are
likely similar among a method’s callers and callees. To ensure
a high likelihood of correct predictions, we only propagate an
N trace if and only if all the callers or all the callees of a
method have N traces to a given requirement. Hence, any U
traces for callers/callees prevent this step from propagating N
trace information. This is useful since a U trace could resolve
to either a T or an N trace; and a caller/callee method that has
a T trace to a given requirement makes the propagation of an

3



N trace less likely. Algorithm 2 first makes sure that the trace
information of a given requirement-to-method entry is still a
U trace - line 4 (recall that we do not overwrite previous
predictions). The statement allNs(rtmm[m.collectCallers(),r])
is short for all methods output by m.collectCallers() having N
traces to requirement r. The function allNs is true only if all
the callers/callees have N traces as predictions (i.e., a method
without a caller or callee cannot satisfy this condition).

Algorithm 2 Step 2-N Propagation

1: do
2: for all r in requirements do
3: for all m in methods do
4: if rtmm[m,r]==U then
5: if allNs(rtmm[m.collectCallers(),r])) then
6: rtmm[m,r]=N
7: else if allNs(rtmm[m.collectCallees(),r])) then
8: rtmm[m,r]=N
9: end if

10: end if
11: end for
12: end for
13: until no more predictions are made

As an example, consider method 6-bookTicket of class Ve-
hicle. This method is called by method 4-setPassengerInfo
(which has an N trace to requirement 1). Since method 4-
setPassengerInfo is the only caller of method 6-bookTicket,
Step 2 infers that method 6-bookTicket has an N trace to
requirement 1. Similarly, Step 2 propagates the N trace
from method 1-startGPS of class GPS to method 2-start of
class Car for requirement 2. Consequently, we infer:
rtmm[6-bookTicket, requirement 1]=N
rtmm[1-startGPS, requirement 2]=N

Considering a method’s callers and callees shown in Ta-
ble II, further propagations are made in Step 2. For this pur-
pose, Algorithm 2 keeps iterating until no further propagations
are made (line 13). For example, the previously propagated N
trace from method 4-setPassengerInfo of class Passenger to
method 6-bookTicket of class Vehicle is now propagated further
to method 7-bookTicket of class Train. The reason for this
propagation is that method 4-setPassengerInfo is a caller of
method 7-bookTicket (see Table II) and it being the only caller
implies that allNs(rtmm[m.collectCallers(),r]) is now true. The
algorithm keeps iterating until no more propagations are made
(no more changes between two successive iterations). Doing
so, we infer additional traces as shown in Figure 2:
rtmm[7-bookTicket, requirement 1]=N
rtmm[3-reserveSeat, requirement 1]=N
rtmm[5-start, requirement 2]=N
3) Step 3- T Refinement (Algorithm 3)

With Step 3, we shift our focus from N traces to T traces.
Because our work also considers U traces, we cannot conclude
that every method that remains a U trace is a T trace (recall
that our work distinguishes three trace values: T trace, N
trace, and U trace). However, after we have predicted and

TABLE II: Extended Callers and Callees for the Methods of
the Vehicle Management System in Figure 1

Method# collectCallers() collectCallees()

1-startGPS 2-start
5-start Empty

2-start Empty 1-startGPS

3-reserveSeat 6-bookTicket
7-bookTicket Empty

4-setPassengerInfo Empty
6-bookTicket
7-bookTicket
8-bookTicket

5-start Empty 1-startGPS
6-bookTicket 4-setPassengerInfo 3-reserveSeat
7-bookTicket 4-setPassengerInfo 3-reserveSeat
8-bookTicket 4-setPassengerInfo Empty

propagated N traces, the remaining, still undefined U traces
will contain T traces. Step 3 identifies likely candidates and
does so by again considering requirement-to-class T traces.
This is analogous to Step 1 which did the same for N traces.
Algorithm 3 shows Step 3 of TraceRefiner which refines
requirement-to-class T traces into requirement-to-method T
traces. For this, Algorithm 3 iterates over each requirement-
to-method entry (lines 1,2) and makes a T trace prediction
if one of the following four scenarios applies. Again, these
scenarios are heuristical observations and were derived from
empirical observation [1], the evaluation demonstrates their
high likelihoods of correctness:
Scenario 1 (lines 4-5): A given method is predicted to have a
T trace to a given requirement if it has callers and callees with
at least one class that has a T trace to the given requirement.
Furthermore, none of the method’s callers and callees should
have an N trace to the given requirement (lines 4-5). This
scenario is very conservative and derives its inspiration from
researchers [1] who found a high likelihood for a method to
have a T trace to a given requirement if all its callers/callees
have T traces to that requirement and none have N traces.
However, since we do not have any method-level T traces after
Steps 1 and 2, our algorithm uses the T trace information of
the classes. Basically, this scenario checks if a given method
is called (atLeast1T) and calls (atLeast1T) at least one class
that has a T trace to the given requirement.
Scenario 2 (lines 6-7): Since researchers observed that typ-
ically around 50% of all methods do not have callees [1],
scenario 1 often does not apply. We provide a second scenario
(lines 6-7) for leaf methods - meaning methods that only have
callers and do not have callees. Scenario 2 is equivalent to
scenario 1 except that we only consider callers and we have
empty callees.

Returning to our illustrative example, method 1-startGPS
is a leaf method (it does not call any methods but is called
only) – recall Figure 1. Method 1-startGPS is still a U trace
to requirement 1. However, method 1-startGPS is called by
methods of classes Car and Vehicle; and class Car has a T
trace to requirement 1 (see Table I). Hence, there is at least
one T trace among the classes that call method 1-startGPS
(m.collectCallers().classes). Moreover, neither methods 2-start
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nor 5-start is currently predicted to have an N trace to
requirement 1 (i.e., rtmm[2-start, requirement 1]==U and
rtmm[5-start, requirement 1]==U). The rationale is that some
owner classes of the callers of 1-startGPS must have a T trace
to requirement 1 and there are no indications that 1-startGPS’s
callers have N traces. Hence, it is likely that 1-startGPS has
a T trace to requirement 1. Hence, we infer:
rtmm[1-startGPS, requirement 1]=T

Scenarios 3 and 4 (lines 8-11): Scenario 1 required at

Algorithm 3 Step 3-T Refinement

1: for all r in requirements do
2: for all m in methods do
3: if rtmm[m,r]==U and rtmc[m.class,r]==T then
4: if atLeast1T(rtmc[m.collectCallers().classes,r])

and atLeast1T(rtmc[m.collectCallees().classes,r])
and zeroNs(rtmm[m.collectCallers(),r])
and zeroNs(rtmm[m.collectCallees(),r])
then

5: rtmm[m,r]=T
6: else if isEmpty(m.callees)

and atLeast1T(rtmc[m.collectCallers().classes,r])
and zeroNs(rtmm[m.collectCallers(), r])
then

7: rtmm[m,r]=T
8: else if allTs(rtmc[m.collectCallers().classes,r])

and zeroNs(rtmm[m.collectCallers(), r])
and zeroNs(rtmm[m.collectCallees(), r]) then

9: rtmm[m,r]=T
10: else if allTs(rtmc[m.collectCallees().classes,r])

and zeroNs(rtmm[m.collectCallers(), r])
and zeroNs(rtmm[m.collectCallees(), r]) then

11: rtm[m,r]=T
12: end if
13: end if
14: end for
15: end for

least one method’s callers’ class and at least one method’s
callees’ class to have a T trace to a given requirement. Let
us now consider scenario 3 (lines 8-9), the latter applies
to a method’s callers’ classes only but requires all of those
caller classes to have a T trace to the given requirement. A
given method is thus predicted to have a T trace to a given
requirement when all of the classes of that method’s callers
have a T trace to the given requirement. Moreover, neither
of the caller and callee methods should have N traces to the
given requirement. Scenario 3 is thus a simplification such
that caller classes are considered but a restriction such that all
caller classes must have a T trace. However, it does not make
assumptions about its callees. Scenario 4 (lines 10-11) is the
callee counterpart of Scenario 3. It applies when all of the
callees’ classes have a T trace to a given requirement and none
of the callers/callees have N traces to the given requirement.
Method 2-start illustrates Scenario 4. Method 2-start’s trace
relationship to requirement 1 still has a U trace (rtmm[2-start,

requirement 1]==U). Method 2-start belongs to class Car and
class Car has a T trace to requirement 1. Moreover, method
2-start calls a single method only (method 1-startGPS) and
this method’s class also has a T trace to requirement 1. Since
none of this method’s callers and callees have N traces to
requirement 1, Step 3 infers a T trace. Similar reasoning would
apply to method 5-start of class Vehicle. However, since we
have a U trace for class Vehicle with requirement 1, Step 3
does not apply. The rationale for Scenarios 3 and 4 is similar
to Scenarios 1 and 2 and omitted for brevity. Again, we
constructed these scenarios based on empirical observations
about their high likelihoods of correctness. We conclude that:
rtmm[2-start, requirement 1]=T as shown in Figure 2.
4) Step 4- T Propagation (Algorithm 4)

Now that some T traces have been predicted in Step 3,
Step 4 propagates these T traces among callers and callees
much like it was done in Step 2 for N traces. Similarly to
Step 2, Step 4 keeps iterating until no more predictions are
made (line 15). Algorithm 4 is divided into three scenarios
where each scenario applies to already predicted requirement-
to-method T traces from Step 3. The first scenario (lines 5-6)
of Algorithm 4 is specific to leaf methods: a T trace prediction
is made if a method’s callees are empty and if there is at least
one T trace among the method’s callers. Scenarios 2 (lines
7-8) and 3 (lines 9-10) are the exact counterparts of Step 2. T
traces are propagated if all callers/callees of a method have T
traces to a given requirement. In our motivating example, none
of the rules of scenario 4 applies. Figure 1 does not show any
additional predictions for Step 4. Hence, this is an example in
which no further predictions are made by TraceRefiner when
moving from Step 3 to Step 4 as shown in Figure 2.

Algorithm 4 Step 4-T Propagation

1: do
2: for all r in requirements do
3: for all m in methods do
4: if rtmm[m,r]==U then
5: if isEmpty(m.callees)

and atLeast1T(rtmm[m.collectCallers(),r]) then
6: rtmm[m,r]=T
7: else if allTs(rtmm[m.collectCallers(),r])) then
8: rtmm[m,r]=T
9: else if allTs(rtmm[m.collectCallees(),r])) then

10: rtmm[m,r]=T
11: end if
12: end if
13: end for
14: end for
15: until no more predictions are made

III. EVALUATION

A. Research Questions
In order to evaluate the correctness, completeness, and

applicability of TraceRefiner, the following research questions
are addressed:
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TABLE III: Information on the Four Study Systems

Chess Gantt iTrust JHotDraw
Language Java Java Java Java

KLOC 7.2 41 43 72
#Methods 752 5013 4913 6520

#Interfaces 23 209 5 99
#Classes 104 666 718 663

#Superclasses 18 180 135 296
#Method Calls 1042 7578 12093 11413
#Sample Reqs 8 18 34 21

rtmm Size 6016 90234 167042 136920

• R1: How correct (measured in precision and recall) are
the predicted requirement-to-method traces compared to the
gold standard?

• R2: How does TraceRefiner compare to other techniques?

B. Case Studies
In order to answer these questions, we applied TraceRefiner

on four case studies. All of the systems are open source and
are written in Java. These systems are Chess, Gantt, iTrust,
and JHotDraw (Table III). Chess [14] is an implementation
of a chess game where two opponents play on a 2D board.
Gantt [15] is a scheduling application for time management
allowing one to manage resources and calendars. iTrust [11]
is an application that allows patients to keep track of their
medical history. JHotDraw [16] is a 2D graphics framework
that enables its user to draw graph-like structures, such as
architecture and design models.

We chose these systems because they are nontrivial in terms
of their code sizes (between 7 and 72 KLOC in size); the
high number of lines of code (LOC) reflects the complexity
of software developed in industry. Also, we had available 81
functional requirements that were listed as the key features of
our case studies by the key developers of the four systems [17].
These 81 requirements were accompanied by the correspond-
ing requirement-to-code traces. In the following, we refer to
these ground-truth traces as our gold standard for comparison
with the predictions made by TraceRefiner. The dataset for
these systems as well as the parsed information (method calls,
data dependencies, etc) were previously published as a data
showcase study paper [17]. Also, all the trace data we use in
this paper is open source and made available online [18].

We evaluate TraceRefiner’s performance by comparing its
output predictions against the gold standard. For Chess, Gantt,
and JHotDraw, we contacted the key developers of these
systems and we prompted them to enumerate the requirements
that implement the code’s core functionalities and create
traces for these requirements. These developers were given
an entire week to produce the requirement-to-method traces
(our gold standard) as well as the requirement-to-class traces
(TraceRefiner’s input). They were also paid for performing
these tasks. In case of iTrust, the list of the system’s core
requirements as well as the list of requirement-to-class traces
and requirement-to-method traces were all available on the
project’s website [19]. These were all made available by the
system’s original developers. Since iTrust is a commonly used
system in traceability experiments, we expect the quality of
these traces to be high. For all these case studies, developers

TABLE IV: Quantifying the requirement-to-class rtmc input
traces

System Tc(#) Nc(#) Uc(#) Total Tc(%) Nc(%) Uc(%)
Chess 131 253 448 832 15.75 30.41 53.85
Gantt 93 2483 9412 11988 0.78 20.71 78.51
iTrust 181 2743 21488 24412 0.74 11.24 88.02
JHot. 98 1490 12335 13923 0.70 10.70 88.59

TABLE V: Quantifying the requirement-to-method rtmm Input
Gold Standard

System Tm(#) Nm(#) Um(#) Total Tm(%) Nm(%) Um(%)
Chess 563 2389 3064 6016 9.36 39.71 50.93
Gantt 343 23166 66725 90234 0.38 25.67 73.95
iTrust 307 7173 159562 167042 0.18 4.30 95.52
JHot. 439 12219 124262 136920 0.32 8.92 90.76

did not provide trace information for all requirement-to-
method/requirement-to-class entries and left some undefined
(U traces). In case of the requirement-to-class traces, trace
information was not provided for inner Java classes, interfaces,
and abstract classes. Similarly, this was also the case for all the
traces related to methods within inner Java classes, interfaces,
and abstract classes. More information about our trace data
collection process can be found in our previous paper [17].

Table IV provides details on the quantity of requirement-
to-class traces available to us (used as input to TraceRefiner)
and Table V provides details on the quantity of requirement-to-
method traces available to us (gold standard used for compar-
ison with the output of TraceRefiner). As is often the case, the
requirement-to-class rtmc tends to be incomplete [2]. This also
was true for all our case studies. As Table IV shows, we had
available only about 11 - 46% of all possible requirement-to-
class T and N traces as input ((T+N)/Total). Also, as shown in
Table V, we had 4 - 49% of all possible requirement-to-method
T and N traces for comparison (correctness assessment). The
high proportion of U traces for our systems as shown in
Tables IV and V is a normal phenomenon as engineers do
not report complete tracing relationships between requirements
and code [1]. There might be a high proportion of U traces
as is the case for iTrust. Despite the incompleteness, the gold
standard provided us with an amount of useful data that is
more than sufficient. For example, in the case of JHotDraw’s
rtmm, 12,658 of the 136,920 entries had T/N trace values.

Similarly, we notice that the percentage of T traces is far
lower than the one of N traces at the class level. For instance,
Gantt has 0.78% of T traces as opposed to 20.71% of N traces
within its rtmc. The reason for this is that a small area of the
code (i.e, one or two classes) implements the requirement and
the majority of the remaining classes do not. This explains
the higher proportion of N traces as opposed to T traces at the
class level (rtmc). Likewise, we notice that the amount of T
traces is far lower than the amount of N traces at the method
level as shown in Table V and the reason for this is similar
to the one previously stated at the class level. Indeed, there
could be only two methods implementing the requirement and
1,000 other methods not implementing it. This explains the
imbalance between the proportion of T and N traces at the
method level.
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TABLE VI: T trace/N trace Precision and Recall and Completeness of the requirement-to-method traces output by TraceRefiner

Sys. Step 1-
Tp

2-
Np

3-
Total

T traces N traces
4-

TPT

5-
FPT

6-
FNT

7-
Prec.T

8-
Rec.T

9-
F1 T

10-
TPN

11-
FPN

12-
FNN

13-
Prec.N

14-
Rec.N

15-
F1N

Chess

1 0 2063 2063 0 0 0 NA NA NA 1612 0 0 100 100 100
2 0 3144 3144 0 0 46 NA NA NA 1822 46 0 98 100 99
3 923 - 4067 417 391 - 52 90 66 - - 391 - 82 89
4 1403 - 4547 467 448 - 51 91 65 - - 448 - 80 88

Gantt

1 0 55535 55535 0 0 0 NA NA NA 22365 0 0 100 100 100
2 0 66609 66609 0 0 57 NA NA NA 22592 57 0 100 100 100
3 908 - 67517 97 124 - 44 63 52 - - 124 - 99 100
4 1527 - 68136 146 184 - 44 72 55 - - 184 - 99 99

iTrust

1 0 17573 17573 0 0 0 NA NA NA 6572 0 0 100 100 100
2 0 28657 28657 0 0 9 NA NA NA 6685 9 0 100 100 100
3 290 - 28947 81 27 - 75 90 82 - - 27 - 100 100
4 1035 - 29692 93 28 - 77 91 83 - - 28 - 100 100

JHot.

1 0 116787 116787 0 0 0 NA NA NA 12013 0 0 100 100 100
2 0 125748 125748 0 0 86 NA NA NA 12066 86 0 99 100 100
3 1738 - 127486 98 34 - 74 53 62 - - 34 - 100 100
4 2389 - 128137 132 49 - 73 61 66 - - 49 - 100 99

Avg. 4 1589 56040 57628 210 177 50 61 79 67 10791 50 177 99 95 97

C. Prediction Quality Results

The evaluation of TraceRefiner was done by comparing
every entry of the requirement-to-method rtmm with its gold
standard. Note that we only used those rtmm entries where the
gold standard reports a T or an N trace. A U trace in the gold
standard would need inspection by a domain expert to decide
whether the entry should be a T or an N trace. Hence, we
cannot use the gold standard U traces.

Table VI shows the results obtained at each step of applying
TraceRefiner on our case studies. An entry containing a “-
” in Table VI signifies that the value is identical to the
one obtained at the previous step. An entry containing “NA”
signifies that the value cannot be computed at this step of
the technique. Columns 1, 2, and 3 in Table VI respectively
show the cumulative amounts of T trace predictions, N trace
predictions, and their sum at each step of TraceRefiner. We
determine precision and recall for T traces (columns 4 through
9 in Table VI) and N traces (columns 10 through 15 in Table
VI) separately. We will explicate our evaluation from the T
traces perspective first (columns 4 through 9). In case both
our prediction and our gold standard are T traces, then this
is a True Positive (TPT-column 4). If our prediction is a T
trace and our gold standard is an N trace, then we have a
False Positive (FPT-column 5). If our prediction is an N trace
and our gold standard is a T trace, then we speak of a False
Negative (FNT-column 6).

Considering the N trace perspective, we have a True Positive
(TPN-column 10) when both our prediction and our gold
standard are N traces. We have a False Positive (FPN-column
11) when our prediction is an N trace and our gold standard is
a T trace. We have a False Negative (FNN-column 12) when
our prediction is a T trace and our gold standard is an N trace.

We then apply the standard formulas for calculating preci-
sion, recall and the F1 measure, once for T traces (columns
7, 8, 9), and once for N traces (columns 13, 14, 15).

1) N trace Precision and Recall
We notice that our N trace precision and recall are high;

their average values are 99% and 95%, respectively. Consid-
ering the individual values of N trace precision and recall for
each of our four case studies, we notice that all these values
are above 90% except for the N trace recall for our Chess
system which is 80% at the end of the four steps. Here, N trace
recall is comparatively lower as we have 448 cases of False
Negatives compared to 1,822 True Positives. This means that
TraceRefiner makes some incomplete predictions in Step 2 and
incorrect N trace predictions in Steps 3 and 4. These incorrect
predictions occur for “boundary methods”, meaning methods
with callers having T traces to a given requirement and callees
having N traces to the same requirement, or vice versa. As
their name implies, “boundary methods” are located at the
boundary of an interconnected region of methods calling each
other and all having a T or an N trace to a given requirement.
Despite the presence of False Negatives caused by “boundary
methods”, our N trace recall is still high for Chess (80%) and
TraceRefiner still yields a high average precision (99%) and
recall (95%) for our case studies.
2) T trace Precision and Recall

We notice in Table VI that at the end of our algorithm (after
Step 4), our T trace precision is between 44-77%. This means
that slightly more than half of the T trace predictions were
made correctly. Note, that this is not equal to a random guess,
as the percentage of T traces in the rtmm is much lower than
the N and U traces: below 1% for Gantt, iTrust, and JHotDraw,
and less than 10% for Chess (see Table V).

We notice that the T trace recall at the end of Step 4 ranges
between 61% to 72% for Gantt and JHotDraw and up to 91%
for Chess and iTrust. The lower recall for Gantt and JHotDraw
is due to the comparatively high number of False Negatives
(FNT). The False Negatives comprise all gold standard T traces
that we incorrectly predicted as N traces. The high amount of
False Negatives for Gantt and JHotDraw is due to the high
number of “boundary methods” within these two systems.
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Similarly to Section III-C1, the low T trace precision is
due to the presence of False Positives (FPT). Again, these
False Positives correspond to all situations in which “boundary
methods” are encountered. In future work, we plan to devise
additional rules specific to “boundary methods” in order to
decrease the amounts of False Positives and False Negatives
obtained after applying TraceRefiner.

D. Comparison with Other Techniques
To the best of our knowledge, TraceRefiner is the first and

only technique that refines coarse-grained requirement-to-class
traces into fine-grained requirement-to-method traces. There-
fore, it is difficult to perform a comparison of TraceRefiner
against other trace refinement techniques since the latter are
nonexistent.

Also, predicting N traces is an innovation of TraceRefiner
given that existing approaches predict T traces assuming that
everything else is an N trace. Therefore, only a high-level
comparison of T trace predictions is possible. Hence, the
performance of our N trace predictions cannot be compared
given that explicit N trace predictions are a novelty of
TraceRefiner that no other researchers have considered. As
previously mentioned, N traces are important as they allow
engineers to discard an entire group of requirement-to-method
entries that are guaranteed to not trace to a given requirement.
1) Comparison against State of the Art Techniques

State of the art techniques perform requirement-to-code
recovery at the level of classes. These could, in principle,
also be applied at the method level. Example state of the art
techniques include Trustrace [9], UDCSTI [20], and TLE [21].
Trustrace [9] is an information retrieval technique that mines
software repositories to generate requirement-to-class traces.
UDCSTI [20] is a human assisted information retrieval tech-
nique in which the human validates the IR requirement-to-class
traces automatically generated. TLE [21] is a technique that
automatically evolves requirement-to-class traces across two
consecutive versions of a system.

These techniques report precision and recall at the level of
requirement-to-class traces. Pinpointing the exact method of a
class that traces to a requirement is a lot more challenging than
pinpointing the entire class that traces to the same requirement
[1]. Thus, we argue that their precision and recall form the
upper boundary of what their techniques are able to achieve.

Both Trustrace and TLE yield a precision of 59% which
is similar to the precision obtained after using our refine-
ment technique (61%). However, it is important to note that
TraceRefiner performs a more challenging task than Trustrace
and TLE. As previously mentioned, recovering requirement-
to-method traces is more difficult than recovering requirement-
to-class traces. Thus, we conjecture that the precision of both
TLE and Trustrace would decrease if we were to readjust
these techniques to generate requirement-to-method traces
instead of requirement-to-class traces. Similarly, the precision
of UDSTI is 50% and we conjecture that this value would
further decrease if we were to readjust UDSTI to recover
requirement-to-method traces rather than requirement-to-class

traces.
The recall of Trustrace, UDCSTI, and TLE is respectively

15%, 55%, and 43%, whereas the recall of TraceRefiner is
79% on average. Thus, TraceRefiner outperforms Trustrace,
UDCSTI, and TLE in terms of recall.

Similarly, even though TraceRefiner’s T trace precision is
only 61%, we conclude that TraceRefiner outperforms others
in terms of precision.

E. Discussion
The results in Table VI demonstrate that with respect to

N traces, TraceRefiner is producing extremely high quality
results. We are making 99% correct N trace predictions and are
retrieving on average 95% relevant N trace predictions. Thus,
our N trace predictions are useful as they are both precise and
relevant. No other researchers have predicted N traces and all
of them exclusively focus on predicting T traces. Predicting
N traces gives the opportunity for engineers to discard a large
amount of entries that are guaranteed to not trace to a given
requirement. This constitutes one of the strong innovations
offered by TraceRefiner.

Compared to a traditional tracing technique that does not
distinguish between T, N, and, U traces, but assumes every-
thing that is not a T trace must be an N trace, having a
lower T trace precision is still useful given that we provide
high N trace precision. Given that the T trace predictions are
a rather small set compared to the N trace predictions, the
N trace precision is relevant here (i.e., for an engineer, it
would be significantly easier to manually validate up to 2,389
T trace predictions than up to 125,748 N trace predictions
in the case of JHotDraw). Hence, engineers could manually
examine the few T trace predictions made by TraceRefiner
to verify whether they are correct or not. This task would
be feasible given that T trace predictions constitute a small
portion of the T and N trace predictions made by TraceRefiner
(T traces are about 10 times less frequent than N traces [1]).
In doing so, engineers could eliminate all of the requirement-
to-method entries that were predicted as N traces, given that
we demonstrated the correctness and the relevance of our N
trace predictions.

For all these reasons, even though TraceRefiner’s T trace
precision is 61%, we argue that TraceRefiner makes a signifi-
cant contribution towards the automatic refinement of coarse-
grained traces, achieving far superior quality than comparable
techniques (especially given the high quality of N trace pre-
dictions).

F. Threats to Validity
Internal Validity We counter researcher bias by considering

data from various open source systems with traces created by
developers rather than by the paper’s authors.

External Validity Given the high number of LOC in our case
studies and given that we are considering the key requirements
of the systems specified by developers, we conjecture that
our findings can be generalized to other systems. The four
case studies were very diverse and built by different people.
One system, iTrust, even included network communication
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which obscures method calls (i.e., no observable calls between
client and server at source code level). Still, TraceRefiner
delivered very good results. However, all case studies had Java
in common. Given that very little code structure is used as part
of TraceRefiner’s reasoning, we believe that TraceRefiner can
be applicable to other languages. Methods and method calls
are commonly found in non-Java/non-OO languages including
C, Python, C#, and many more. Therefore, overall, we see
no major limitation in applying TraceRefiner to other systems
written in other languages and making use of method calls.

Construct Validity An additional threat to validity is that
we relied on a gold standard provided by humans in order to
perform our evaluation. It is not only likely but certain that
there are errors in this gold standard given that it comprises
several hundred thousand entries. We mitigated this risk for
our case studies by resorting to the original developers of the
systems as a means for creating the gold standard. This is
an indicator of the high quality of our gold standard and its
minimal amount of error.

IV. RELATED WORK

To the best of our knowledge, no existing work addresses
the refinement of coarse-grained traces into fine-grained ones–
and in particular not for requirement-to-code traces. How-
ever, there are similarities between TraceRefiner and others.
Most notably, Ghabi and Egyed [1] developed a technique
for predicting likely incorrect traces using information about
calling relationships within the code. These researchers rely
on calling relationships derived from program execution.
TraceRefiner also relies on calling relationships but from
parsed source code information. The main difference between
TraceRefiner and Ghabi’s and Egyed’s is that TraceRefiner
refines coarse-grained requirement-to-code traces into fine-
grained ones, while their technique [1] validates pre-existing
fine-grained traces. TraceRefiner takes as input requirement-to-
class traces and generates requirement-to-method traces, while
Ghabi’s and Egyed’s technique takes as input requirement-to-
method traces and outputs validated/unvalidated requirement-
to-method traces.

It has also been shown that manual trace capture is ex-
pensive and time consuming [8], [10]. This has motivated
the need for automated trace generation techniques based on
information retrieval [9], [22]. However, these techniques lack
correctness (precision and recall) given that they are often
based on text similarities among requirements and source
code [10]. Ali et al. propose Trustrace [9], a technique that
combines information retrieval and mining software repos-
itories for generating requirement-to-code traceability links.
Again, this technique is limited as its success depends on the
quality of the data contained in software repositories [9]. Other
researchers [20] have relied on involving engineers in order to
generate traceability data derived from information retrieval
techniques. All of these techniques focus on establishing traces
between requirements and coarse-grained sources of code (i.e,
classes). None of these techniques focuses on creating traces
between requirements and fine-grained sources of code such

as methods [8]–[10], [20], [22]. Also, these techniques do not
succeed in producing correct and complete requirement-to-
method traces.

Other techniques focus on recovering traces between code
and artifacts other than requirements; or between requirements
and artifacts other than code. For example, Cleland-Huang et
al. suggest a technique based on web mining by using the
internet to obtain a relevant set of indicator terms that can be
used to produce traces between requirements and regulatory
codes [10]. Some techniques automatically recover traces
between requirements and architecture [23], [24] while others
recover traces between source code and documentation [25].
Guo et al. [26] propose a solution that relies on a tracing
network architecture that uses Word Embedding and Recurrent
Neural Network (RNN) models to create traces among any
class of artifacts (test cases, documentation, source code, etc).

Very different yet related are techniques that rely on haptic
feedback – for example, developers’ eye gazes like Walters
et al. [27] or Sharif et al. [28] who suggest generating traces
between bug reports and source code according to developers’
eye gazes while performing work in an IDE.

Complementary is also the work on trace evolution. For
example, Rahimi and Cleland-Huang [21], [29] developed a
technique for evolving traces between requirements and Java
classes. Such techniques reason about changes to code and/or
requirements and their implications on traces. Their technique
produces a good quality of traces – but only if the quality of
the traces was good to begin with.

It is also worth noting that many researchers have evaluated
the advantages of traceability in the software engineering
lifecycle. Research shows that traceability facilitates regression
testing, change impact analysis, and reverse engineering [30].
It is also worth mentioning that trace correctness and com-
pleteness have received much attention in the community. For
example, much of the incentive behind TraceRefiner is based
on an empirical study performed by Kong et al. [8], [12] who
evaluated the quality of traces obtained after manually evolv-
ing traces. Like us, they presume the existence of trace in-
formation but measured the implications of trace maintenance
on its quality. One of the observations highlighted by Kong
et al. [12] is that subjects validating high quality requirement-
to-method traces end up deteriorating their quality rather than
improving it. Papers like these motivate TraceRefiner because
they demonstrate that manual trace capture is limited and
should be supported by (semi) automated trace validation and
trace refinement whenever feasible.

Note that TraceRefiner focuses on the connection between
a given requirement and the source code regardless of the
interrelations among requirements. In that regard, TraceRefiner
is quite different from feature interaction techniques that
take into consideration overlapping concerns [31], concept
lattices [32] or concern graphs [33]. Also, researchers have
previously explored the connection between calling relation-
ships in the program and traces [22], [34], [35] but they have
never considered automatically refining coarse-grained traces
into fine-grained ones.
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V. CONCLUSION

We presented a novel technique for refining requirement-to-
class traces into requirement-to-method traces. TraceRefiner
leverages the code structure to refine traces. To the best of our
knowledge, this is the first work that performs trace refinement.
Another innovation of TraceRefiner lies in our N traces that are
not taken into account by other researchers. TraceRefiner can
be used by engineers to automatically recover more useful,
fine-grained traces out of easier to produce, coarse-grained
traces. This would facilitate and speed up code maintenance
activities such as fixing bugs.
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